
Efficient Algorithms for Collision Avoidance at
Intersections

Alessandro Colombo
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA, 02139
acolombo@mit.edu

Domitilla Del Vecchio
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA, 02139

ddv@mit.edu

ABSTRACT
We consider the problem of synthesising the least restric-
tive controller for collision avoidance of multiple vehicles at
an intersection. The largest set of states for which there
exists a control that avoids collisions is known as the max-
imal controlled invariant set. Exploiting results from the
scheduling literature we prove that, for a general model of
vehicle dynamics at an intersection, the problem of checking
membership in the maximal controlled invariant set is NP-
hard. We then describe an algorithm that solves this prob-
lem approximately and with provable error bounds. The
approximate solution is used to design a supervisor for col-
lision avoidance whose complexity scales polynomially with
the number of vehicles. The supervisor is based on a hybrid
algorithm that employs a dynamic model of the vehicles and
periodically solves a scheduling problem.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Control theory, Scheduling ; I.2.9
[Artificial Intelligence]: Robotics—Autonomous vehicles

General Terms
Algorithms, Theory

Keywords
Intelligent transportation system, collision, complexity, hy-
brid, safety, scheduling

1. INTRODUCTION
An intelligent transportation system is a set of tightly

interacting physical, computational, and communication re-
sources that collaborate to enhance the performance of a
transportation network. Of the possible performance met-
rics safety is, for obvious reasons, considered of primary im-
portance [24]. A number of solutions have been proposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’12, April 17–19, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1220-2/12/04 ...$10.00.

to improve vehicular safety, typically addressing the sta-
bility of the longitudinal or lateral dynamics of a vehicle,
or reducing the risk of rear-end collisions [1–3]. A much
harder problem, both from a technological and a computa-
tional point of view, is that of preventing collisions caused
by drivers’ mistakes when vehicles traverse an intersection.
From a control perspective, this problem is ideally solved
by determining the largest set of states for which there ex-
ists a control that avoids collisions, which is known as the
maximal controlled invariant set [21]. The set of all controls
that make this set invariant is the least restrictive among
all control sets that enforce safety. A multi-objective con-
trol problem with safety as the primary objective and some
other performance metric, for example fuel consumption, as
secondary objective, can be solved hierarchically once this
control set is determined, by optimizing within the control
set. The problem of determining the maximal controlled in-
variant set for pairs of vehicles at an intersection is solved
in [9, 10, 14, 15]. These results exploit the monotonicity of
the vehicles’ dynamics to derive a computationally efficient
control law, but do not apply to more than two vehicles.
An algorithm that addresses multi-vehicle collisions, based
on abstraction, has been proposed in [5]. Here, the control
problem is reduced to the control of a finite automaton, and
the maximal controlled invariant set is approximated by a
set of allowed states of the automaton. However, the size
of the automaton scales exponentially with the size of the
problem, thus limiting the applicability to a small number of
vehicles. An algorithmic approach to safety enforcing based
on time slot assignment, which can handle a larger number
of vehicles, is found in [18]. It allows to design a safe control
law, but it does not provide means to assess the performance
of the result by any metric.

In the context of this paper, membership in the maximal
controlled invariant set is determined by solving the follow-
ing problem.

Problem A (Safety, informal statement) Given the
initial state of a set of n agents moving along n different
paths crossing at an intersection, determine if there exists
an input signal that leads all agents through the intersection
avoiding collisions.

Notice that we assume that agents move along different
paths, and that all paths intersect at a common point, as
in Fig. 1. Extensions to our results that allow to handle
more complex cases, like multilane intersections with mul-
tiple agents on each lane, are currently under study. The
approach we follow consists in mapping Problem A onto a

Figure 1: Example of intersection topology.

scheduling problem [22], where the intersection represents a
machine, and the time spent by each agent in the intersec-
tion is the length of the job to be executed on the machine.
We develop this analogy rigorously, proving that a formal
restatement of the above problem is indeed equivalent, in a
strong sense, to a modified version of a standard schedul-
ing problem. Through this artifice, we can formally prove
that Problem A, for a general class of vehicle dynamics,
is NP-complete. This justifies the design of approximate
algorithms to solve the problem. We revert again to the
scheduling version of Problem A and we leverage results in
the operations research literature to devise an approximate
solution that has polynomial complexity and is within prov-
able bounds from an optimal solution.

We use the exact solution of Problem A to design the
least restrictive safety-enforcing controller, which solves the
following problem.

Problem B (Supervisor, informal statement) Given a
set of agents as in Problem A, design a supervisor that, given
a desired input, returns the desired input unless this will
cause a collision at some future time, in which case it re-
turns a safe input.

The supervised system is hybrid: agents have continuous
dynamics, while the allowed inputs are selected at discrete
time instants through the solution of the scheduling version
of Problem A. We then synthesise the above controller us-
ing the approximate solution of Problem A, obtaining an
approximate solution of Problem B within provable bounds
of the exact one. The resulting controller enforces safety as
long as all agents behave according to the model.

Our solutions exploit algorithms that are well known in
the scheduling literature. The proof that these algorithms
can be used to solve Problem A, and their use as solution of
a control problem, constitute the main contributions of this
paper, and are new results to the best of our knowledge.

The paper is organised as follows. In the next section,
we introduce some standard concepts of computational com-
plexity theory and operations research which are used in the
paper. In Section 3, we formalize Problem A and we refor-
mulate it in terms of a scheduling problem. Then, in Section
4, we prove that the two formulations are equivalent, and we
prove complexity results. Section 5 proposes the exact and
approximate solution of Problem A. Both solutions are used
in Section 6 to provide a solution to Problem B. Finally,
in Section 7 we apply the proposed algorithms on a simple
model of vehicle dynamics.

2. MATHEMATICAL FOUNDATIONS
As mentioned in the Introduction, the results of this paper

revolve around the translation of Problem A into a schedul-
ing problem. In order to carry out the proofs, we introduce

some standard machinery from the literature on scheduling
and computational complexity theory.

Scheduling is the decision-making process of assigning to
a number of jobs a schedule, that is, a set of execution
times, to satisfy given requirements [22]. The standard for-
malism to describe a scheduling problem was introduced
in [13]. It represents a problem by the string α|β|γ, where
the field α describes the machine environment (e.g. the num-
ber of machines), the field β defines the jobs characteristics
(such as unequal release dates or constraints on duration),
and the field γ defines the optimality criterion. This paper
is concerned with two closely related scheduling problems:
1|ri |Lmax, and 1|ri , pi = 1|Lmax introduced in the following
definitions.

Definition 2.1 (1|ri |Lmax) Given a set of n jobs to be run
on a single machine, with release times ri ∈ R+, dead-
lines di ∈ R+, and durations pi ∈ R+, find a schedule
T = (T1, ..., Tn) ∈ Rn+ such that, for all i ∈ {1, ..., n},

Ti ≥ ri ,

for all i 6= j,

Ti ≥ Tj ⇒ Ti ≥ Tj + pj,

and such that Lmax := maxi(Ti + pi − di) is minimized.

The second problem, 1|ri , pi = 1|Lmax, is identical to the one
above, except that pi = 1 for all jobs.

The above problems are optimization problems. Compu-
tational complexity theory focuses instead on decision prob-
lems, problems that have a binary answer in {yes, no} [6].
When a problem P returns “yes” for an instance I we say
that P accepts I, denoted I ∈ P . Any optimization problem
can be cast into a decision problem by imposing a bound on
the optimized quantity. Although the solution of a decision
problem carries less information than that of the associated
optimization problem, analysing the complexity of a decision
algorithm is still relevant to the original optimization prob-
lem. Indeed, the computational complexity of a decision
problem cannot be higher than that of the corresponding
optimization problem, since an optimal solution is immedi-
ately mapped onto an answer to the decision problem.

We use the notation DEC(α|β|γ, δ) to represent the deci-
sion problem“does α|β|γ have a solution with γ ≤ δ?” Thus,
DEC(1|ri |Lmax, 0) is stated as follows.

Definition 2.2 (DEC(1|ri |Lmax, 0)) Given a set of n jobs
to be run on a single machine, with release times ri ∈ R+,
deadlines di ∈ R+, and durations pi ∈ R+, determine if
there exists a schedule T = (T1, ..., Tn) ∈ Rn+ such that, for
all i ∈ {1, ..., n},

ri ≤ Ti ≤ di − pi ,

and for all i 6= j,

Ti ≥ Tj ⇒ Ti ≥ Tj + pj.

The statement of DEC(1|ri , pi = 1|Lmax, 0) is obtained by
adding the constraint pi = 1 for all i.

The concepts of reducibility and equivalence [6, 19] are
used when comparing the complexity of different problems.

Definition 2.3 A problem P1 is reducible to a problem P2
if for every instance I of P1 an instance I ′ of P2 can be
constructed in polynomial-bounded time, such that I ∈ P1⇔
I ′ ∈ P2. In this case, we write P1 ∝ P2.

Two problems P1 and P2 are equivalent, denoted P1 ' P2,
if P1 ∝ P2 and P2 ∝ P1.

Problem DEC(1|ri |Lmax, 0) has been shown to be NP -
complete by reduction of Knapsack [19]. It can be solved
by enumerative algorithms that systematically test all the
possible permutations of jobs. Unlike DEC(1|ri |Lmax, 0),
DEC(1|ri , pi = 1|Lmax, 0) has an exact O(n3)-time solution,
reported in [12] and implemented in Algorithm 1. The so-

Algorithm 1 Solution of DEC(1|ri , pi = 1|Lmax, 0)

1: procedure PolynomialTime(r,d)
2: for all i ∈ {1, . . . , n} do Fi ← ∅, ci ← ∅
3: end for
4: sort jobs in increasing ri (r1 ≤ r2 ≤ r3 ≤ ...)
5: for i = n downto 1 do . Part I: forbidden regions
6: for all j ∈ {1, . . . , n} such that dj ≥ di do
7: if cj = ∅ then cj ← dj − 1
8: else cj ← cj − 1
9: end if

10: while cj ∈ Fk for some Fk do cj ← inf(Fk)
11: end while
12: end for
13: if i = 1 or ri−1 < ri then c← mini(ci)
14: if c < ri then return {∅, no}
15: end if
16: if c ∈ [ri , ri + 1] then Fi ← [c− 1, ri]
17: end if
18: end if
19: end for
20: t← 0
21: for i = 1 to n do . Part II: schedule
22: rmin ← min{rj : job j has not been scheduled}
23: t← max{t, rmin}
24: while t ∈ Fj for some j do t← sup(Fj)
25: end while
26: j ← {i : job i has least deadline among those

ready at t}
27: Tj ← t
28: t← t+ 1
29: end for
30: return {T, yes}
31: end procedure

lution of the decision problem only requires the binary an-
swer, but Algorithm 1 returns a schedule T along with the
binary answer. The information on the schedule is used in
the following sections to design an approximate solution to
Problem A. The algorithm starts by computing a set of for-
bidden regions, i.e., intervals Fi ⊂ R during which no job can
be started. Then, it schedules jobs by increasing deadline
order, ensuring no job is started during a forbidden region.

3. FORMALIZATION OF PROBLEM A
Consider the system

ẋ = f(x,u), y = h(x) (1)

given by the parallel composition of the dynamics of n (pos-
sibly different) agents

ẋi = fi(xi, ui), yi = hi(xi) (2)

with xi ∈ Xi ⊆ Rr, ui ∈ Ui ⊂ Rs, yi ∈ Yi ⊆ R, and hi(xi)
continuous in xi. The function space of the inputs signals
ui(t), t ∈ [0,∞), is Ui. The aggregate states, inputs and out-
puts of all agents are denoted x, u and y, respectively. The
corresponding sets are U , X, U , and Y , respectively. Assume
that (1) has unique solutions. This is ensured, for example,
if (1) is locally Lipschitz [17], while uniqueness conditions
for piecewise smooth systems are reported in [11]. Assume
that systems (2) are output-monotone [4] and that the pos-
itivity cone of the output yi is R+. This means that there
exist two convex cones Ki

x ⊂ Rr and Ki
u ⊂ Rs, such that

xi(0) − x′i(0) ∈ Ki
x and ui(t) − u′i(t) ∈ Ki

u for all t ≥ 0
imply yi(t)− y′i(t) ∈ R+ for all t ≥ 0. Assume also that the
set Ui is compact and is a partially ordered set [8] with re-
spect to its positivity cone, with a unique maximum, called
ui,max, and minimum, called ui,min. Finally, assume that
ẏi is bounded to a strictly positive interval [ẏi,min, ẏi,max]
for all i. When the state of agent i at a specified time t0 is
xi(t0), a trajectory starting at xi(t0) or the corresponding
output signal at time t ≥ t0, with input ui in [t0, t], are de-
noted xi(t, ui, xi(t0)) and yi(t, ui, xi(t0)), respectively. For
the sake of brevity, when t0 = 0 we use the notation xi(t, ui)
and yi(t, ui). When the particular input is not important,
we write simply xi(t) and yi(t), and when time is not impor-
tant we simply use the variable name without arguments.

We assign to each system i an open interval (ai, bi), and
we say that two agents i and j collide if the outputs of the
corresponding systems verify the condition yi(t) ∈ (ai, bi)
and yj(t) ∈ (aj , bj) at the same time instant t. We say that
a set of agents {i, j, ..} collides if any pair of agents in the
set collides. The subset of Y of collision points is called the
bad set, denoted B+:

B+ :=
{y ∈ Y : yi ∈ (ai, bi) and yj ∈ (aj , bj), for some i 6= j}.

We start by formalizing Problem A. Notice that it is a
decision problem, in the sense introduced in Section 2. Then,
we propose an alternative formulation in the form of another
decision problem, that can be proved to be equivalent.

Problem A (Safety, formal statement) Given initial con-
ditions x(0), determine if there exists an input signal u(t)
that guarantees that y(t,u) /∈ B+ for all t ≥ 0.

An instance of Problem A is described by the initial con-
ditions x(0), and by the set

Θ := {f, h,X,U,U , Y, a1, . . . , an, b1, . . . , bn}. (3)

The instance {x(0),Θ} ∈ Problem A if and only if x(0)
belongs to the maximal controlled invariant set of system
(1), with parameters Θ. In order to reformulate Problem A
as a scheduling problem, we introduce three quantities: Ri,
Di, and Pi. These play a similar role to the release times,
deadlines, and job durations of Section 2. Specifically, for
each agent i, if yi(0) ≤ ai define

Ri := inf
ui∈Ui

{t : yi(t, ui) = ai}, Di := sup
ui∈Ui

{t : yi(t, ui) = ai},

and set Ri = Di = 0 if yi(0) > ai. Since (2) is output-
monotone we have that, if yi(0) ≤ ai,

Ri = {t : yi(t, ui,max) = ai}, Di = {t : yi(t, ui,min) = ai}.
(4)

These two quantities are, respectively, the minimum and
maximum time at which the output of system i can reach
ai. Notice that Ri and Di are always well defined, since (1)
has unique solutions and ẏi ≥ ẏi,min > 0. For each agent i
such that yi(0) ≤ ai, given a real number Ti, define

Pi(Ti) := inf
ui∈Ui

{t ≥ 0 : yi(t, ui) = bi} (5)

with constraint

yi(t, ui) ≤ ai ∀ t < Ti. (6)

If the constraint cannot be satisfied, set Pi(Ti) := ∞. If
yi(0) ∈ (ai, bi) define Pi(Ti) := {t : yi(t, ui,max) = bi}, and
if yi(0) ≥ bi define Pi(Ti) := 0. Pi(Ti) is the earliest time
that i can reach bi, if it does not pass ai before Ti.

Recall that quantities Ri, Di, and Pi(Ti) defined above
depend on the initial condition xi(0) through yi(t). Problem
A is reformulated as follows.

Problem 1 (Scheduling) Given initial conditions x(0), de-
termine if there exists a schedule T = (T1, . . . , Tn) ∈ Rn
such that, for all i,

Ri ≤ Ti ≤ Di, (7)

and for all i 6= j such that yi(0) < bi,

Ti ≥ Tj ⇒ Ti ≥ Pj(Tj). (8)

As for Problem A, an instance of Problem 1 is described by
the set {x(0),Θ}.

Notice that the quantity Di in (7) plays a role that is
formally similar to the quantity di − pi in the definition of
DEC(1|ri |Lmax), that is, Di is a deadline minus a job dura-
tion. This choice, as opposed to letting Di be a deadline,
allows to simplify the proofs in the following section.

Example 3.1 Consider system (1) with fi(xi, ui) = ui,
hi(xi) = xi, xi ∈ R, ui ∈ [1, 2], and i ∈ {1, 2, 3}.
Let (x1(0), a1, b1) = (0, 2, 4), (x2(0), a2, b2) = (2, 4, 6),
(x3(0), a3, b3) = (4, 6, 8). According to (4) we have
(R1, D1) = (1, 2), (R2, D2) = (2, 4), (R3, D3) = (3, 6),
and according to (5), Pi(Ti) = Ti + 1, since bi − ai = 2
and ui,max = 2 for all i. Therefore, any schedule T with
T1 ∈ [1, 2], T2 ∈ [T1 + 1, 4], T3 ∈ [T2 + 1, 6], is feasible
for Problem 1. Similarly, the schedule T with T1 ∈ [1, 2],
T2 = 4, T3 = 3 is feasible.

4. PROBLEMS A AND 1 ARE EQUIVALENT
AND NP-HARD

Theorem 4.1 Problem A ' Problem 1.

Proof. We must show that Problem A is reducible to
Problem 1 and vice versa. Notice that for both Problems
an instance is fully described by the set {x(0),Θ}, thus
the mapping between instances of the two problems is the
identity (which has obviously polynomially bounded running

time). Proving equivalence thus amounts to proving that for
a given {x(0),Θ},

{x(0),Θ} ∈ Problem A⇔ {x(0),Θ} ∈ Problem 1.

({x(0),Θ} ∈ Problem A ⇒ {x(0),Θ} ∈ Problem 1): As-
sume that ỹ(t, ũ) satisfies the constraints of Problem A. The
time instants at which ỹ(t, ũ) crosses each of the planes
yi = ai define a vector T (notice that synchronous cross-
ings are forbidden by ỹ /∈ B+), and we can set Ti = 0
if yi(0) > ai. This T satisfies (7) given the definition of Ri
and Di. Moreover, the time instants at which ỹ(t, ũ) crosses

the planes yi = bi defines a vector P̃ = (P̃1, . . . , P̃n), and for

all i such that Ti ≥ Tj and yi(0) < bi, Ti ≥ P̃j , otherwise
ỹ(t, ũ)∩B+ 6= ∅. Since Pi(Ti) is the minimum time at which
agent i can exit the intersection, provided it enters no earlier
than Ti, we have that Pi(Ti) ≤ P̃i. Therefore T also satisfies
(8).
({x(0),Θ} ∈ Problem A ⇐ {x(0),Θ} ∈ Problem 1): As-
sume that Problem 1 accepts the instance {x(0),Θ}. As-
sume that yi(0) ≤ ai for all i and, without loss of generality,
that Tn ≥ Ti for all i ∈ {1, . . . , n− 1}. To satisfy condition
(8), the schedule must be such that Pi(Ti) is finite for all
i ∈ {1, . . . , n− 1}. Thus by definition of Pi(Ti), there exists
an input such that yi(t) ≤ ai for all t < Ti, and yi(t) = bi
when t = Pi(Ti). To satisfy (7) and (8), with this input
each yi enters the interval (ai, bi) no earlier than Ti, leaves
the interval at Pi(Ti), and the intervals (Ti, Pi(Ti)) do not
intersect. Thus agents 1, . . . , n − 1 do not collide. Then,
setting un = un,min, we know that agent n reaches an at
time tn = Dn. By (7), tn ≥ Tn, and by (8) Tn ≥ Pi(Ti) for
all i ∈ {1, . . . , n − 1}. Thus when yn ∈ (ai, bi), yi ≥ bi for
all i ∈ {1, . . . , n− 1}, hence agents 1, . . . , n do not collide.

If for some systems i we have yi(0) > ai, then Ri = 0
and Di = 0. By (7) this implies Ti = 0. For agents with
yi(0) > ai, by definition of Pi we have that Pi(0) = 0 if
yi(0) ≥ bi, and Pi(0) > 0 otherwise. Problem 1 accepts
{x(0),Θ} only if there exists at most one agent such that
ai < yi(0) < bi, otherwise we would have Ti = Tj = 0 and
Pi(Ti), Pj(Tj) > 0 which contradicts (8). Assume, without
loss of generality, that agents 1, . . . ,m − 1 have yi(0) ≥ bi,
and agent m has ym(0) ∈ (am, bm). Agents 1, . . . ,m− 1 do
not collide regardless of the input. Agent m has input such
that ym(Pm(Tm)) = bi, and agents m + 1, . . . , n reach ai
at t ≥ Pm(Tm) with a collision-free input, by the reasoning
above.

Now let PC(Ui) be the set of piecewise constant functions
R → Ui. To prove NP -hardness of Problems A and 1 we
consider the particular set of instances obtained by fixing

fi(xi, ui) = ui, hi(xi) = xi, Xi = R, Yi = R
Ui = [ui,min, ui,max] ⊂ R, Ui = PC(Ui), (9)

and show that DEC(1|ri |Lmax, 0), which is NP-complete
(see [19]), can be reduced to Problem 1.

Theorem 4.2 Consider 1|ri |Lmax with n > 1 jobs, and
Problem 1 with n agents. Then,

DEC(1|ri |Lmax, 0) ∝ Problem 1.

Proof. Consider the set of instances of Problem 1 that
satisfy (9). One such instance with n agents is described
by n sets of numbers (xi(0), ai, bi, ui,min, ui,max), while an
instance of DEC(1|ri |Lmax, 0) with n jobs is described by

n sets of numbers (ri , di , pi). Let us call x(0), a, b, umin,
umax, r, d, p the n-dimensional vector of the corresponding
quantities. To prove the theorem, we must find a mapping
g : (r,d,p) 7→ (x(0),a,b,umin,umax), and prove that

(r,d,p) ∈ DEC(1|ri |Lmax, 0)⇔ g(r,d,p) ∈ Problem 1,

which is equivalent to

(r,d,p) ∈ DEC(1|ri |Lmax, 0)⇒ g(r,d,p) ∈ Problem 1
and

(r,d,p) /∈ DEC(1|ri |Lmax, 0)⇒ g(r,d,p) /∈ Problem 1.
(10)

We begin by assuming, without loss of generality, that
ri , di > 0 for all i. This can always be ensured by adding a
constant to r and d. To construct the mapping g, partition
the set of instances (r,d,p) in two groups: (i) instances such
that, for some i, di − pi < ri ; (ii) all other instances.

For all instances in group (i), set the image of g to an
arbitrary non-accepted instance of Problem 1, e.g. set
xi(0) ∈ (ai, bi), xj(0) ∈ (aj , bj) for some i 6= j. This is
possible since n > 1. Given that for all instances in group
(i) (r,d,p) /∈ DEC(1|ri |Lmax, 0), and that, by construction,
g(r,d,p) /∈ Problem 1, mapping g restricted to instances of
group (i) satisfies (10).

For the instances in group (ii), set (ri , di , pi) 7→
(xi(0), ai, bi, ui,min, ui,max) with

xi(0) = 0, ai = ri , bi = (pi + ri),
ui,min = ri/(di − pi), ui,max = 1.

(11)

The two above sets of equations transform every instance of
DEC(1|ri |Lmax, 0) in group (ii) into an instance of Problem
1. Writing (4) and (5) explicitly for a system that satisfies
(9), we have

Ri =
ai − xi(0)

ui,max
, Di =

ai − xi(0)

ui,min
, Pi(Ti) =

bi − ai
ui,max

+Ti.

Rewriting the right-hand sides of these using (11) we obtain
Ri = ri , Di = di − pi , Pi(Ti) = pi + Ti. The above
equations formally transform the conditions on (ri , di , pi) of
DEC(1|rj |Lmax, 0) into the conditions on (Ri, Di, Pi) in (7)
and (8) of Problem 1, therefore g restricted to instances of
group (ii) satisfies (10). This concludes the proof.

From the above theorem, and from the equivalence of Prob-
lems 1 and A, we obtain

Lemma 4.3 Problems 1 and A are NP-hard

Proof. DEC(1|ri |Lmax, 0) is reducible to Problem 1, and
since the first is NP-complete, the second is NP-hard. Also,
by Theorem 4.1, Problem A is NP-hard.

5. SOLUTION OF PROBLEM A
Consider the set P of all permutations of the index vector

(1, . . . , n). Let π be a member of P, and πi be the i-th in-
dex of the permutation. Once the parameters of system (1)
are specified, Problem 1 can be solved for an arbitrary set
of initial conditions x(0) by Algorithm 2. Since Problems
A and 1 are equivalent, the same algorithm solves Prob-
lem A. Algorithm 2 explores all the possible permutations
in P, and since the cardinality of the search space grows
factorially in the number of agents n, so does the running

Algorithm 2 Solution of Problem 1

1: procedure ExactSolution(x(0))
2: for all i ∈ {1, . . . , n} do
3: given xi(0) calculate Ri, Di
4: end for
5: for all π ∈ P do
6: Tπ1 ← Rπ1

7: for i = 2→ n do
8: Tπi ← max(Pπi−1(Tπi−1), Rπi)
9: end for

10: if Ti ≤ Di for all i ∈ {1, . . . , n} then
11: return {T, yes}
12: end if
13: end for
14: return {∅, no}
15: end procedure

time of the algorithm. As we have seen, Problem 1 is NP-
hard, so unsurprisingly there is no known way to find a so-
lution to all instances in polynomial time with respect to
n. Moreover, since our ultimate goal is to use an algorithm
that solves Problem A to construct the control law required
by Problem B, and this must run in real time, even an al-
gorithm with good average running time, but exponential
worst-case time, would not be good enough. Using results
from the scheduling literature, however, we can design algo-
rithms that provide an approximate solution to Problem 1
in polynomial time. The approach that we propose consists
in adding an additional constraint to Problem 1, so that it
becomes solvable in polynomial time. Then we gauge the ef-
fect of this additional constraint on the solutions. We start
by proving the following

Lemma 5.1 Consider system (2) and Ri, Di defined in (4),
and assume that Ui is path connected, that solutions of (1)
depend continuously on the input, and that hi is continuous.
If yi(0) < ai then, for any Ti ∈ [Ri, Di] there exists a ui ∈ Ui
such that yi(Ti, ui) = ai.

Proof. By assumption solutions of (1) depend continu-
ously on the input, therefore by continuity of hi, yi(t, ui) de-
pends continuously on ui. Since yi(0) < ai, ẏi ≥ ẏi,min > 0,
and (1) has unique solutions, {t : yi(t, ui) = ai} defines a
single-valued, continuous map M : Ui → [Ri, Di]. Finally,
since Ui is path connected, there is a continuous path in Ui
connecting the inputs corresponding to Ri and Di. The im-
age of a continuous path under a continuous map is a contin-
uous path, connecting pointsRi andDi, and therefore covers
the whole interval [Ri, Di], that is, M is surjective.

Now define the quantity

δmax := max
i∈{1,...,n}

sup
xi(0)∈Xi:yi(0)=ai

{t : yi(t, ui,max) = bi}.

(12)
This is the minimum worst-case time necessary for yi to go
from ai to bi. From here on we assume the hypotheses of
Lemma 5.1. This implies that there exists an input ui ∈
Ui such that yi(Ti, ui) = ai, and using (12) that yi(Ti +
δmax, ui) ≥ bi, so that by the definition of Pi(Ti), Pi(Ti) ≤
Ti + δmax. We modify Problem 1 as follows.

Problem 2 (Approximation) Given initial conditions x(0),
determine if there exists a schedule T = (T1, . . . , Tn) ∈ Rn
such that, for all i,

Ri ≤ Ti ≤ Di,

and for all i 6= j such that yi(0) < bi, if Tj = 0 then

Ti ≥ Tj ⇒ Ti ≥ Pj(Tj),

if Tj > 0 then

Ti ≥ Tj ⇒ Ti ≥ Tj + δmax.

Any schedule that satisfies Problem 2 also satisfies Problem
1, since Tj + δmax ≥ Pj(Tj). By solving Problem 2 however,
we allocate the resource (the intersection) for more time that
is strictly needed by each agent. We are thus trading maxi-
mum traffic flow with computational speed.

By (4) Ri = 0⇔ Di = 0, and agents with Ri = Di = 0 do
not contribute to the combinatorial complexity of Problem 1
as Ti has a unique possible value. By normalizing the data of
Problem 2 to make δmax = 1, and then setting Ri = ri , Di =
di−1, Ti = Ti , Problem 2 for agents withRi, Di > 0 becomes
formally equivalent to DEC(1|ri , pi = 1|Lmax, 0), which is
solved in polynomial time by Algorithm 1. Algorithm 3
solves Problem 2 treating separately agents with yi(0) ≥ ai,
for which Ri = Di = 0, and agents with yi(0) < ai. In
the pseudocode of ApproximateSolution, without loss of
generality, we assume that yi(0) ≥ ai for i = 1, . . . ,m, and
yi(0) < ai for i = m+ 1, . . . , n. Since Algorithm 3 provides

Algorithm 3 Solution of Problem 2

1: procedure ApproximateSolution(x(0))
2: for all i ∈ {1, . . . , n} do given xi(0) calculate Ri, Di
3: end for
4: if yi(0) ∈ [ai, bi) for two different i ∈ {1, . . . ,m}

then
5: return {∅, no}
6: end if
7: for all i ∈ {1, . . . ,m} do Ti ← 0
8: end for
9: Rbound ← max{P1(0), . . . , Pm(0)}

10: for all i ∈ {m+ 1, . . . , n} do Ri ← max(Ri, Rbound)
11: end for
12: set δmax as in (12)
13: r = (Rm+1/δmax, . . . , Rn/δmax)
14: d = (Dm+1/δmax + 1, . . . , Dn/δmax + 1)
15: {Tm+1 , . . . , Tn , answer}=PolynomialTime(r,d)
16: for i = m+ 1→ n do Ti ← Tiδmax
17: end for
18: return {T, answer}
19: end procedure

an approximate solution to Problem 1, we need a measure of
the quality of this solution. We perform this by providing an
upper bound to the quantity supu∈U inft≥0,b∈B+ ‖y(t,u) −
b‖∞, calculated over all x(0) for which Algorithm 3 returns
“no”. This is the maximum over all possible inputs u ∈ U
of the distance of y(t,u) from the bad set B+, and, as such,
it gives a measure of how much Algorithm 3 “overestimates”
B+. To provide the upper bound we first introduce the
following result.

Lemma 5.2 For a given x(0), take an arbitrary u ∈ U , and
define a schedule T as Ti = {t : yi(t, ui) = ai} for all i such
that yi(0) < ai, and Ti = 0 for all other i. Assume that,
for some i and j, yi(0) < ai, yj(0) ≤ aj, Ti ≥ Tj, and
Ti − Tj ≤ δmax, that is, two jobs are scheduled within δmax
of each other. Then

inf
t≥0,b∈B+

‖y(t,u)−b‖∞ ≤ max
i∈{1,...,n}

ẏi,max

(
δmax −

bi − ai
ẏi,max

)
,

Proof. Since ẏj ≤ ẏj,max, yj remains in the interval
(aj , bj) for a time interval greater or equal to (bj−aj)/ẏj,max,

therefore yj(Ti, uj) − bj ≤ ẏj,max
(
δmax − bj−aj

ẏj,max

)
, while

yi(Ti, ui) = ai. The set of points in Y with yi = ai, yj = bj
is on the boundary of B+, therefore

infb∈B+ ‖y(Ti,u)− b‖∞ ≤ yj(Ti, uj)− bj ≤
maxi∈{1,...,n} ẏi,max

(
δmax − bi − ai

ẏi,max

)
.

Theorem 5.3 If for a given x(0) ApproximateSolution
returns “no”, then

supu∈U inft≥0,b∈B+ ‖y(t,u)− b‖∞ ≤
maxi∈{1,...,n} ẏi,max

(
δmax − bi − ai

ẏi,max

)
.

(13)

Proof. ApproximateSolution returns “no” if yi(0) ∈
[ai, bi) for two different i, or if PolynomialTime at line 15
returns “no”. In the first case the left hand side of (13) is
equal to 0, since y(0) is on the boundary of B+, and (13)
is verified. In the second case, if PolynomialTime returns
“no” then, for any schedule T with Ti ∈ [Ri, Di] for all i,
there exist i and j with yi(0) < ai, yj(0) < aj , Tj ≤ Ti, such
that Ti − Tj < δmax. This is a consequence of the fact that
PolynomialTime solves DEC(1|ri , pi = 1|Lmax, 0) exactly.
By the reasoning above, for any u ∈ U , the schedule T
defined by Ti = {t : yi(t, ui) = ai} if yi(0) < ai, Ti =
0 otherwise, has Ti ∈ [Ri, Di] for all i, and satisfies the
hypotheses of Lemma 5.2. This completes the proof.

According to the above theorem, if ApproximateSolution
cannot find a feasible schedule for an initial condition x(0),
then all outputs y(t,u) with u ∈ U intersect the extended
bad set

B̂+ :={
y : inf

b∈B+

‖y − b‖∞ ≤ max
i∈{1,...,n}

ẏi,max
(
δmax − bi − ai

ẏi,max

)}
.

(14)

6. SOLUTION OF PROBLEM B
Problem B requires to design a supervisor that, given

the current state of the system and a desired input, re-
turns the desired input if this does not cause a collision
at some future time, or a safe input otherwise. Thus, the
input returned by the supervisor must keep the state of sys-
tem (1) within the maximal controlled invariant set. As
we have seen in the previous sections, membership in this
set is determined by solving Problem A or its scheduling
version, Problem 1. In Section 5 we have provided an ex-
act and an approximate algorithm to solve these problems.
We can exploit these algorithms in the solution of Problem
B by designing the supervised system as a hybrid system.

This is obtained from matching the continuous dynamics
of (1) with a discrete-time control map. At the k-th itera-
tion, the control map takes as arguments the current state
x(kτ) and desired (constant) value vk ∈ U of the input for
t ∈ [kτ, (k + 1)τ], and returns an input signal uout, with
value in U , defined for t ∈ [kτ, (k + 1)τ]. The choice of the
returned input signal is based on the solution of Problem 1.
The sought supervisor is the map s : (x(kτ),vk) 7→ uout.
To give a precise meaning to the statement of Problem B,
we must formally define the conditions under which a de-
sired input may cause a collision. Given vk, consider the
two signals ūk and ū∞k defined as follows: the first is de-
fined on the interval [kτ, (k + 1)τ] and identically equal to
vk; the second is an element of U defined on [kτ,∞), and
such that ū∞k (t) = ūk(t) when t ∈ [kτ, (k + 1)τ]. Addi-
tionally, given x(kτ), call u∞k,safe(t) ∈ U a control signal
such that y(t,u∞k,safe,x(kτ)) /∈ B+ for all t ≥ kτ (if such
control exists), and call uk,safe the restriction of u∞k,safe to
the interval [kτ, (k + 1)τ]. If u∞k,safe does not exists, let
u∞k,safe,uk,safe = ∅. Problem B is formally stated as follows

Problem B (Supervisor, formal statement) Design
the supervisor s(x(kτ),vk) for system (1) such that

s(x(kτ),vk) =

 ūk if ∃ ū∞k (t) ∈ U :
y(t, ū∞k ,x(kτ)) /∈ B+∀ t ≥ kτ

uk,safe otherwise,

and so that it is non-blocking: if uout =
s(x(kτ),uk) 6= ∅, then for any vk+1, k ≥ 0,
s (x((k + 1)τ,uout,x(kτ)),vk+1) 6= ∅.

Given a system of the form (1) and the state x(kτ) at some
time kτ , the procedure ExactSolution in Algorithm 2 re-
turns a binary value (yes/no), and a schedule T. We can
use this information to design the supervisor in Problem B.
To this end, introduce the operator σ(xi(0), Ti), associated
to the function Pi(Ti). For all agents with yi(0) ≤ ai, let

σ(xi(0), Ti) := arg inf
ui∈U
{t ≥ 0 : yi(t, ui) = bi}, (15)

with constraint

yi(t, ui) ≤ ai ∀ t < Ti, (16)

This is the input ui that brings y(t, ui, xi) at bi at t =
Pi(Ti) (see (5)). If the constraint cannot be satisfied, set
σ(xi(0), Ti) := ∅. If yi(0) ∈ (ai, bi) define σ(xi(0), Ti) :=
ui,max, and if yi(0) ≥ bi define σ(xi(0), Ti) := 0. If the input
is not unique, let σ return one among the possible solutions.
Call σ(x(0),T) the vector (σ(x1(0), T1), . . . , σ(xn(0), Tn)).
Assume that, at t = 0, we have ExactSolution(x(0)) =
{T0, yes}, and define u∞0,safe = σ(x0,T0) and u0,safe as the
restriction of u∞0,safe to the time interval [0, τ]. At each it-
eration k = 0, 1, 2, . . ., the supervisor map s(x(kτ),vk) is
defined by Algorithm 4, using the current state x(kτ), the
desired input vk, and the value uk,safe calculated at the
previous iteration. The algorithm returns ūk (the desired
input), if the state reached with this input is within the max-
imal controlled invariant set; otherwise it returns uk,safe. To
prove that Algorithm 4 correctly solves Problem B, we use
the two following lemmas as intermediate results.

Lemma 6.1 If ExactSolution(x(kτ)) = {T, yes}, then
σ(x(kτ),T) 6= ∅.

Algorithm 4 Implementation of the supervisor map

1: procedure s(x(kτ),vk)
2: ūk(t)← vk ∀ t ∈ [kτ, (k + 1)τ]
3: {T, answer} ←
4: ExactSolution(x((k + 1)τ, ūk,x(kτ)))
5: if answer = yes then
6: u∞k+1,safe ← σ(x((k + 1)τ, ūk,x(kτ)),T)
7: uk+1,safe ← u∞k+1,safe restricted to [kτ, (k + 1)τ]
8: return ūk
9: else

10: {T, answer} ←
11: ExactSolution(x((k + 1)τ,uk,safe,x(kτ)))
12: u∞k+1,safe ← σ(x((k + 1)τ,uk,safe,x(kτ)),T)
13: uk+1,safe ← u∞k+1,safe restricted to [kτ, (k+ 1)τ]
14: return uk,safe
15: end if
16: end procedure

Proof. The existence of an input σ(x(kτ),T) correspond-
ing to the schedule T is proved as in the proof of Theorem
4.1.

Lemma 6.2 If ExactSolution(x(kτ)) = {T, yes}, defin-
ing u := σ(x(kτ),T), ExactSolution(x((k+1)τ,u,x(kτ)))
returns “yes”.

Proof. The input u is well defined by Lemma 6.1. Call
y(t,u,x(kτ)) the corresponding output trajectory, defined
from time (kτ), and let ũ be u restricted to the interval
[(k + 1)τ,∞). Clearly if y(t,u,x(kτ)) ∩ B+ = ∅, then
y(t, ũ,x((k + 1)τ,u,x(kτ)) ∩ B+ = ∅, therefore {x((k +
1)τ,u,x(kτ)),Θ} ∈ Problem A, with Θ defined by (3). Since
Problem A ' Problem 1, {x((k+ 1)τ,u,x(kτ)),Θ} ∈ Prob-
lem 1.

Theorem 6.3 Assume that s(x(0),v0) 6= ∅. Then, the su-
pervisor s(x(kτ),vk) defined by Algorithm 4 solves Problem
B.

Proof. To be a solution of Problem B, s(x(kτ),vk) (i)
must return ūk unless all possible ū∞k would eventually cause
a collision and (ii) it must be nonblocking.

To prove (i), note that Algorithm 4 returns ūk unless Ex-
actSolution at line 4 returns “no”. If 4 returns “no”, then
{x((k + 1)τ, ū,x(kτ)),Θ} /∈ Problem 1, and by equivalence
of Problems A and 1, {x((k + 1)τ, ū,x(kτ)),Θ} /∈ Problem
A. Thus by definition of Problem A and of ū∞k , for all ū∞k ,
y(t, ū∞k ,x(kτ)) ∩B+ 6= ∅.

To prove (ii) we can proceed by induction: by assump-
tion s(x(0),v0) 6= ∅, and we must show that if uout =
s(x(kτ),vk) 6= ∅, then s(x((k+ 1)τ,uout,x(kτ)),vk+1) 6= ∅.
First notice that s(x((k + 1)τ,uout,x(kτ)),vk+1) 6= ∅ as
long as uk+1,safe 6= ∅, so all we have to do is to show that
uk+1,safe 6= ∅. State x((k + 1)τ,uout,x(kτ)) is reached ei-
ther with an input uout = ū (lines 5-8 in Algorithm 4) or
uout = uk,safe (lines 9-14). In the first case, by Lemma 6.1
line 4 of Algorithm 4 ensures that σ at line 6 is nonempty.
In the second case, by Lemma 6.2 the procedure ExactSo-
lution at line 11 must return {T, yes}, and by Lemma 6.1
this implies that σ at line 12 is nonempty.

Notice that, if the step τ is increased, the “restrictiveness”
of Algorithm 4 is unaffected. Indeed, for any value of τ the

algorithm returns the desired input if and only if this does
not cause collisions. The size of τ is thus only a matter of
engineering and design convenience.

Algorithm 4 is based on the procedure ExactSolution,
whose running time scales factorially with the number of
agents. Therefore, it can be applied only to relatively small
problems. To achieve a control law that scales polynomially
with the number of controlled agents, we proceed as follows.
Define σapprox as σ in (15) with constraint (16) replaced
by yi(Ti, ui) = ai. Notice that Lemma 5.1 ensures that an
input satisfying this constraint exists if yi(0) ≤ ai and Ti ∈
[Ri, Di]. Then, at lines 4 and 11 of Algorithm 4 substitute
ExactSolution with ApproximateSolution defined by
Algorithm 3, and at lines 6 and 12 substitute σ with σapprox.

Through the substitution, the supervisor retains the non-
blocking property defined by Problem B, but it allows only
a subset of all collision-free trajectories. More precisely we
have the following result.

Theorem 6.4 Consider the extended bad set B̂+ defined
in (14). Call ŝ(x(kτ),vk) the supervisor defined in Prob-

lem B substituting B̂+ to B+, and call sapprox(x(kτ),vk)
the supervisor defined by Algorithm 4 modified as detailed
above. Then sapprox(x(kτ),vk) is no more restrictive than
ŝ(x(kτ),vk), that is, if sapprox(x(kτ),vk) = uk,safe then
ŝ(x(kτ),vk) = uk,safe. Moreover if sapprox(x(0),v0) 6= ∅
then the supervisor is non-blocking in the sense defined in
Problem B.

To prove this result we use two intermediate lemmas.

Lemma 6.5 If ApproximateSolution(x(kτ)) = {T, yes},
then σapprox(x(kτ),T) 6= ∅.

Proof. By the definition of Problems 1 and 2,
ApproximateSolution(x(kτ)) = {T, yes} implies that
ExactSolution(x(kτ)) = {T, yes}, the result follows from
Lemma 6.1.

Lemma 6.6 If ApproximateSolution(x(kτ)) = {T, yes},
defining u := σapprox(x(kτ),T),
ApproximateSolution(x((k+1)τ,u,x(kτ)) returns “yes”.

Proof. Assume, without loss of generality, that y(kτ) is
such that yi(kτ) ≥ ai for i ∈ {1, . . . ,m}, while yi(kτ) < ai
for all other agents. Also, assume that y((k+ 1)τ,u,x(kτ))
is such that yi((k + 1)τ, ui, xi(kτ)) ≥ ai for i ∈ {1, . . . , p}
with p ≥ m, while yi((k + 1)τ, ui, xi(kτ)) < ai for all other
agents. ApproximateSolution(x((k + 1)τ,u,x(kτ)) re-
turns a positive answer provided that (i) no more than one
of the agents 1, . . . , p are in [ai, bi) and (ii) Polynomial-
Time at line 15 finds a feasible schedule. (i) is ensured by
condition ApproximateSolution(x(kτ)) = {T, yes} and
by having u := σapprox(x(kτ),T). To have (ii) Polynomi-
alTime must find a feasible schedule. According to Defi-
nition 2.2, this is a schedule T such that Ti ∈ [ri , di], and
such that |Ti − Tj | ≥ 1 for all i 6= j. Since Polynomi-
alTime solves DEC(1|ri , pi = 1|Lmax, 0) exactly, it always
returns a positive answer if a feasible schedule exists. Since
ApproximateSolution(x(kτ)) = {T, yes}, elements of T
corresponding to agents m+1, . . . , n satisfy |Ti−Tj | ≥ δmax
for i 6= j. By the definition of σapprox, yi(Ti+kτ, ui, xi(kτ)) =
ai. Consider x((k+1)τ) := x((k+1)τ,u,x(kτ)), and the in-
put ũ equal to u restricted to the interval [(k+ 1)τ,∞). For

all i ∈ {p, . . . , n}, call T ′i = {t : yi(t, ũi, xi((k + 1)τ)} = ai,
and call R′i and D′i the quantities defined in (4) with respect
to initial condition xi((k+ 1)τ). For all such i, T ′i = Ti − τ ,
therefore all T ′i are at least at distance δmax from each
other. Moreover, T ′i ∈ [R′i, D

′
i] by construction. The sched-

ule T = (T ′p/δmax, . . . , T
′
n/δmax) is thus a feasible schedule

for DEC(1|ri , pi = 1|Lmax, 0).

Proof of theorem 6.4. By Theorem 5.3 and by (14),
the procedure ApproximateSolution returns“yes”if there
is an input that keeps the state outside of B̂+, thus
sapprox(x(kτ),vk) is no more restrictive than ŝ(x(kτ),vk).
To prove nonblockingness, one can proceed as in the proof
of nonblockingness of Theorem 6.3, substituting Lemmas 6.5
and 6.6 and procedure ApproximateSolution to Lemmas
6.1 and 6.2 and procedure ExactSolution.

7. EXAMPLES
To compute the quantities Pi(Ti) and σ or σapprox re-

quired by Algorithm 4, we must solve an optimization prob-
lem on the set of inputs U . In general, such a problem may
be solved numerically [7,16]. For illustration purposes, here
we discuss the case in which fi(x, u) in (2) is a double inte-
grator with saturation on the input function:

fi(xi, ui) =

(
0 1
0 0

)
xi +

(
0
C

)
u, h(xi) = (1, 0) · xi,

(17)
with xi ∈ R2 and ui ∈ R, where

C :=

1 if (0, 1) · xi ∈ (ẏi,min, ẏi,max) or

(0, 1) · xi = ẏi,max and ui < 0 or

(0, 1) · xi = ẏi,min and ui > 0
0 otherwise.

The quantity yi = (1, 0) · xi is the position of agent i along
its path, while ẏi = (0, 1) · xi is the velocity. This is a
simple model of longitudinal vehicle dynamics when friction
is negligible, and it satisfies the assumptions of Section 3
and of Lemma 5.1. Notice that the presented algorithm can
handle more general models, including linear and nonlinear
friction terms, such as those discussed in [25].

In the case of equations (17), the optimization problem
on U is solved analytically using standard variational cal-
culus [16, 20]. When no feasible input allows to reach ai
at time Ti with ẏi(Ti) = ẏi,max, extremal solutions can be
proved to have the signal ui composed of three segments
with values ui,min, 0, ui,max (in this order), or two segments
with values ui,min, ui,max (in this order), or a single seg-
ment with value ui,min or ui,max. In the case that ẏi,max
can be attained before reaching ai, there exists a continuum
of optimal solutions. Since σ and σapprox are required to
return a unique solution, in these cases we fix their image
to the unique optimal solution obtained with input sequence
ui,min, 0, ui,max, 0.

Using the optimal inputs defined above to construct σ and
σapprox, we have implemented the supervisor described by
Algorithm 4, for a set of identical agents with dynamics de-
scribed by (17), with ẏi,min = 5Km/h (1.39m/s), ẏi,max =
50Km/h (13.9m/s), ui,min = −2m/s2, ui,max = 1m/s2,
and an interval (ai, bi) that is 10m wide for all agents. The
supervisor runs at discrete time steps of length τ = 1/10s.
In all cases, we have assigned to each agent a fixed “desired
speed”, that the driver tries to maintain, by accelerating or

Figure 2: Complement of the maximal controlled in-
variant set, in the space Y for fixed velocities. Axes
are in meters. For all agents, (ai, bi) = (40, 50).

braking if necessary, unless forced to a different input by
the supervisor. For a 3-agent system, Figure 2 represents a
“slice” in the space Y , for fixed velocities ẏ(0) = (9, 11, 13)
m/s, of the complement of the maximal controlled invariant
set. Computing this set for systems with large state space is
known to be a hard problem, and research has been focusing
on calculating approximations [23]. The procedure Exact-
Solution in Algorithm 2, exploiting the system’s structure,
provides a practical technique to determine if a state is in-
side this set for few agents (0.01 seconds for 6 agents on a
modern laptop). Using the procedure ApproximateSolu-
tion in Algorithm 3, the same test can be executed approx-
imately, with error bound given by Theorem 5.3, on much
larger problems. Figures 3 and 4 depict the trajectories of
six agents controlled by the supervisor, using ExactSolu-
tion and σ, or ApproximateSolution and σapprox, respec-
tively. The interval (ai, bi) = (90, 100) (in gray) is equal for
all agents. In these simulations, the initial positions and
velocities were selected so that, in the absence of supervisor,
all agents would enter the interval (ai, bi) at the same time.
For the sake of simplicity, we let Algorithm 4 return an input
(desired input, or override) for all agents, before and after
the intersection. Agents past the intersection could apply an
arbitrary input without affecting safety, but including this
option would make the algorithm longer without adding sig-
nificant insight.

Notice that, while in Figure 3 agents occupy the gray band
in contiguous time intervals, in Figure 4 there is some idle
time between the instant when an agent leaves the gray band
and when following agent enters it. The maximum distance
of the trajectory in Figure 4 from B+ is bounded as proved
in Theorem 5.3. For the parameters specified above, the
bound is equal to 35.77m. To prove that this bound is tight,
we have repeated the simulation for 15 agents with the same
parameters as above. The result is shown in Figure 5, where
the trajectory reaches the bound exactly.

8. CONCLUSIONS
We have considered the problem of determining member-

ship in the maximal controlled invariant set for a general

Figure 3: Positions (yi), velocities (ẏi), and input
(ui) of 6 agents controlled by the supervisor in Al-
gorithm 4, using ExactSolution and σ. The interval
(ai, bi) = (90, 100) is represented in gray and equal for
all agents. Position curves are in black when the
supervisor accepts the agents’ desired inputs, in red
when the supervisor overrides the desired input.

Figure 4: The same numerical experiment of Figure
3 is executed using the supervisor in Algorithm 4,
using ApproximateSolution and σapprox.

Figure 5: 15 agents supervised using Algorithm 4,
with procedure ApproximateSolution. The bound
given in Theorem 5.3, here denoted ∆, is reached
exactly by the trajectory.

class of systems describing vehicle dynamics at an intersec-
tion. Using results from the scheduling literature and com-
putational complexity theory we have proved that the exact
solution of this problem is NP-complete. We have proposed
an approximate solution whose running time scales polyno-
mially with the number of agents. Based on these results, we
have designed the least restrictive supervisor (solving Prob-
lem B exactly), whose running time scales factorially with
the number of controlled agents. The supervised system
has a hybrid structure, where the continuous dynamics of
the agents are controlled based on the result of a schedul-
ing problem solved at regular time intervals. By modifying
this supervisor, we have obtained an approximate solution
with polynomial running time, and we have provided a tight
bound on the approximation. The supervisor acts as a filter
between a desired input, here assumed to be generated by
the driver, and the physical system. This structure is eas-
ily coupled with other controllers, acting between the driver
input and the supervisor, to pursue secondary performance
objectives within the set of safe control actions allowed by
the supervisor.

The results presented here assume that each agent moves
along a different path and computes the exact or approx-
imate supervisor through a centralised algorithm. We are
currently working on relaxing both constraints, allowing mul-
tiple agents to move on the same path or along merging
paths, and implementing the solution as a distributed algo-
rithm, to further improve scalability.

9. REFERENCES
[1] Car 2 Car Communication Consortium.

http://www.car-to-car.org.

[2] Cooperative Intersection Collision Avoidance Systems
(CICAS). http://www.its.dot.gov/cicas.

[3] Vehicle Infrastructure Integration Consortium (VIIC).
http://www.vehicle-infrastructure.org.

[4] D. Angeli and E. D. Sontag. Monotone control
systems. IEEE Trans. Autom. Control, 48:1684–1698,
2003.

[5] A. Colombo and D. Del Vecchio. Supervisory control
of differentially flat systems based on abstraction. In
50th IEEE Conference on Decision and Control, 2011.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2009.

[7] B. Dacorogna. Direct Methods in the Calculus of
Variations. Springer, 2008.

[8] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge University Press, 2002.

[9] V. Desaraju, H. C. Ro, M. Yang, E. Tay, S. Roth, and
D. Del Vecchio. Partial order techniques for vehicle
collision avoidance: Application to an autonomous
roundabout test-bed. In ICRA ’09. IEEE
International Conference on Robotics and Automation,
2009.

[10] J. Duperret, M. Hafner, and D. Del Vecchio. Formal
design of a provably safe robotic roundabout system.
In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010.

[11] A. F. Filippov. Differential Equations with
Discontinuous Righthand Sides. Kluwer Academic
Publishers, Dordrecht, 1988.

[12] M. R. Garey, D. S. Johnson, B. B. Simons, and R. E.
Tarjan. Scheduling unit-time tasks with arbitrary
release times and deadlines. SIAM J. Comput.,
6:416–426, 1981.

[13] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H.
G Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: a survey.
Annals of discrete mathematics, 4:287–326, 1979.

[14] M. R. Hafner, D. Cunningham, L. Caminiti, and
D. Del Vecchio. Automated vehicle-to-vehicle collision
avoidance at intersections. In Proc. of ITS World
Congress, 2011.

[15] M. R. Hafner and D. Del Vecchio. Computational
tools for the safety control of a class of piecewise
continuous systems with imperfect information on a
partial order. SIAM J. Contr. Opt., To Appear.

[16] E. Bryson Jr. and Y. Ho. Applied optimal control.
Ginn and Company, 1969.

[17] H. K. Khalil. Nonlinear systems. Prentice-Hall, 2002.

[18] H. Kowshik, D. Caveney, and P. R. Kumar. Provable
systemwide safety in intelligent intersections. IEEE
Trans. Veh. Technol., 60:804–818, 2011.

[19] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker.
Complexity of machine scheduling problems. Annals of
discrete mathematics, 1:343–362, 1977.

[20] D. G. Luenberger. Optimization by vector space
methods. Wiley, 1969.

[21] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for
reachability specifications for hybrid systems.
Automatica, 35:349–370, 1999.

[22] M. L. Pinedo. Scheduling: Theory, Algorithms, and
Systems. Springer, 2008.

[23] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi.
Computational techniques for the verification of
hybrid systems. Proc. IEEE, 91:986–1001, 2003.

[24] U.S. Department of Transportation. ITS Strategic
Research Plan 2010-2014.
http://www.its.dot.gov/strategic plan2010 2014/.

[25] R. Verma, D. Del Vecchio, and H. K. Fathy.
Development of a scaled vehicle with longitudinal
dynamics of an HMMWV for an ITS testbed.
IEEE/ASME Transactions on Mechatronics, 13:1–12,
2008.

	Introduction
	Mathematical foundations
	Formalization of Problem A
	Problems A and 1 are equivalent and NP-hard
	Solution of Problem A
	Solution of Problem B
	Examples
	Conclusions
	References

